

Q Search the Penn Medicine sites

News & Publications

News Media Resources Publications Inside Penn Medicine Contact Us for Experts

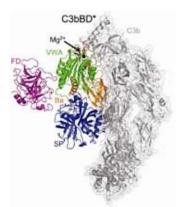
Home | News Release Archive | News Blog | News Bites | Features | In the News

Print, Share, or Save

Share / Save \$

Feeds

DECEMBER 23, 2010


, 2010 🚨 Print version

NEWS RELEASE

Structure of Key Molecule in Immune System Provides Clues for Designing Drugs, According to Penn Study

PHILADELPHIA - A team from the **School of Medicine** and Utrecht University has deciphered a key step in an evolutionarily old branch of the immune response. This system, called complement, comprises a network of proteins that "complement" the work of antibodies in destroying foreign invaders. It serves as a rapid defense mechanism in most species from primitive sponges to humans.

Related Image

Molecular structure of the complement pro-convertase in complex with factor D. A double safety catch mechanism that involves a tiered and meticulously orchestrated interplay of three proteins (C3b, factor B, factor D) ensures that the destructive action of complement is restricted to target cells such as microbial intruders.

Credit: Federico Forneris & Piet Gros (Utrecht University, The Netherlands); Science (Click to view larger version.)

Related Links

Perelman School of Medicine University of Pennsylvania Health System In a study published in the December 24 issue of *Science*, the groups of **John Lambris**, **PhD**, the Dr. Ralph and Sally Weaver Professor of Research Medicine at Penn, and Piet Gros at Utrecht, detail the atomic structure of two key transient enzyme complexes in the human complement system.

Complement proteins mark both bacterial and dying host cells for elimination by the body's cellular cleanup services and have been implicated in at least 30 diseases, including stroke, myocardial infarction, and age-related macular degeneration. The findings, Lambris says, provide a molecular scaffold for designing novel drug therapeutics.

"Now we will be able to design specific complement inhibitors to target this complex and in that way inhibit activation of the complement cascade, because now we know which parts of the proteins are essential for activity," Lambris says.

Guided By Self-Control

The complement system is a form of "innate," or generic immunity, unlike "adaptive" immune responses, in which cellular mediators such as B and T cells learn to target specific antigens through recognition by either antibodies or cell receptors. The complement process unfolds as a complex biochemical network of molecular and cellular communication events, which result in the destruction and elimination of pathogens and damaged cells and eventual recruitment of immune cells.

The two enzyme complexes Lambris studied, called C3bB and C3bBD, drive a central step in amplifying the response by complement proteins. In that step, the complement protein C3 is enzymatically cleaved to form C3b, which binds to the surface of a target cell. C3b then binds factor B to produce C3bB. This complex, in turn, binds another enzyme, factor D (producing C3bBD), which cleaves the complex to form the active C3bBb. The major target of the active C3bBb is C3 itself, resulting in rapid amplification of the complement cascade.

To capture structural snapshots of C3bB and C3bBD, the researchers first generated mutant proteins that would stabilize the complexes in their active forms. Then, Lambris and Gros used x-ray crystallography to describe the two complexes in atomic detail. They

found that, upon binding to C3b, factor B changes its shape to form an "open complex," which can then be

Media Contact

Karen Kreeger 215-349-5658

Other Contacts

Department of Communications (Media Relations) P: (215) 662-2560 F: (215) 349-8312

For the General Public 1-800-789-7366 pennmedicine.org Contact Penn Medicine

Media Resources

Facts

Experts/Beat List

Media Guidelines

Uplink Facility

Photos

RSS Feeds

Twitter

Blog

Latest News

- Penn Presbyterian Medical Center Ranked Among 100 Top Hospitals in the Nation, According to Thompson Reuters
- Penn Medicine's CAREs Foundation Funds Community Health and Education Programs

bound by factor D. Factor D, in turn, shifts its shape in a more subtle yet no less important way: The free protein is inactive because a protein loop blocks the active site of the enzyme. Upon binding to C3bB, that loop alters its position, thereby activating factor D to cleave C3bB into the C3bBb complex.

These findings, Lambris said, provide molecular explanations for several safety features of the complement system. First, they explain why factor D is inactive on its own, but active when engaged by C3bB. They also illustrate a "double safety catch" mechanism the system uses to keep itself in check, preventing complement activation in the absence of a target.

Finally, and perhaps most importantly, they provide data that can aid the design of inhibitors against factor D, which may prove useful in the treatment of complement-associated diseases.

"Besides shedding light on a highly elegant mechanism of concerted activation and intrinsic regulation, this work also offers a detailed insight into one of the most important therapeutic targets within the complement network, which may facilitate rational drug development and could lead to novel drugs for treating complement-related diseases," Lambris says.

Co-authors include Federico Forneris, Jin Wu, and Rachel Wallace of Utrecht University, and Penn researchers Daniel Ricklin and Apostolia Tzekou.

The research was funded by the Netherlands Organization for Scientific Research and the National Institute of Allergy and Infectious Diseases and National Institute of General Medical Sciences.

###

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a \$4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in *U.S. News & World Report*'s survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with \$479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by *U.S. News & World Report*; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided \$854 million to benefit our community.

About Penn Medicine Contact Us Site Map Privacy Statement Legal Disclaimer Terms of Use

Penn Medicine, Philadelphia, PA 800-789-PENN © 2012, The Trustees of the University of Pennsylvania

Breast Cancer
 Patients Suffer
 Treatment-Related
 Side Effects Long
 After Completing
 Care, Penn Study
 Shows

All News Releases